

CES - Creative Electronic Systems S.A.

ETT 2015: SWaP and Modularity: Extending VPX Concepts Into a Smaller Scale Using VNX

January 2014
Version 2

Abstract

SWaP and Modularity: Extending VPX Concepts Into Smaller Scale Using VNX

- Reducing size, weight and power consumption of rugged embedded computer systems, while at the same time pushing computing and I/O performance to ever higher levels has been the "holy grail" of embedded electronic design for many years.
- Price pressure and the need to shorten the "time to market" of new technology calls for modularity and a maximum of reuse when designing a new system.
 - Industry standards such as VPX and VNX help to achieve this.
 - VPX is just now hitting the mainstream of rugged embedded systems designs.
- By extending the same concepts that made VPX successful, into a still smaller form factor, VNX makes modularity accessible in areas which were up-to-now dominated by custom designs.

Introduction

Name Bill Ripley

"Building electronic systems for aerospace since the beginning of time" Business Development, Product Management, Engineering CES, Themis, GE/SBS, Bell Helicopter

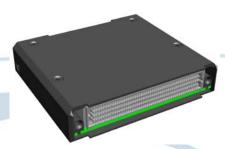
Company CES-CAL in Raleigh, North Carolina, USA

US subsidiary of CES S.A., Geneva CES has apx.100 employees in N America and Europe Founded in 1981

Supplier of computer modules (single board computers, processors and peripherals) and systems for aerospace, defense, physics, and telecom markets

What is VNX?

- VNX is a standard for plug-in modules
 - Compute, Processing, Sensors, Memory and I/O
 - 19mm and 12.5mm
- VNX was designed from the ground up to be inherently rugged and conduction cooled
- VNX was designed for the Small Form Factor marketplace
- VNX is designed to be similarly architected to VPX systems, but at a smaller size, lower power, and lower cost


VNX Standard Module Size and Application

19 mm Module

- Basecard plus optional mezzanine card
- 8 Row connector (400 pins)
- Receptacles for backplane daggers for locating and ESD grounding
- 75mm (L) X 89mm (W) X 19mm (H)
- Applications
 - Single Board Computer
 - Software Defined Radio
 - Graphics / Video
 - FPGA Processor
 - Complex I/O Cards

12.5 mm Module

- Basecard alone, or Basecard with small mezzanine
- 4 Row connector (200 pins)
- Receptacles for backplane daggers for locating and ESD grounding
- 75mm (L) X 89mm (W) X 12.5mm (H)
- Applications
 - I/O Carrier
 - GPS / IMU / SAASM
 - Storage & Memory

What VNX is Not

- VNX is not a system standard
 - Boxes do not have to look like a "cube"
 - Cards can go in any form factor enclosure
 - Cards can be used in conjunction with other standards

Smart Display

VITA 75

½ ATR

CES Chassis Strategy

Different sizes:

- Array of chassis to accommodate 1 to 10 slots
- Commercial & MIL connectors
- VNX or combination VNX & VPX

Natural convection

Coldplate or baseplate cooling

Forced air conduction cooling

Liquid

(Fins)

(Heat dissipation through structure)

(Sidewall fins & skins, plenum)

(Sidewall heat exchangers)

VNX

VPX Vs. VNX

VPX		VNX				
History						
VITA 46 Draft	About 2005	VITA 74 "Released for Trial Use" 2013				
VITA 46 Approved / Revised	2007 / 2013					
VITA 65 Approved / Revised	2010 / 2012					
Form Factor						
6U, 3U (generally not mixed)		19mm, 12.5mm (often mixed)				
Environment						
✓ Air cooled						
✓ Conduction cooled		✓ Conduction cooled				
✓ Two-level maintenance		✓ Two-level maintenance (?)				

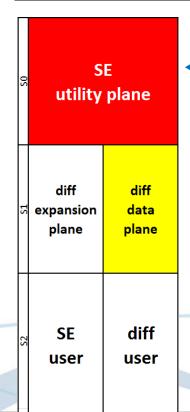
V

How Are VPX and VNX Alike

- Both are VITA Standards
- VNX was designed the lessons learned from VPX
- VNX was designed to allow use of other standards (Com Express Mini, Mini PCIe)
- VNX is a "scaled derivative" of VPX
- VNX backplane topology and connectivity is identical to similarly equipped VPX system
- VPX can support higher performance (higher power) processors
- VNX processors can perform many useful tasks such as Mission Computing, Display Processing, Sensor Processing, I/O Control, Storage Management, etc. with the right amount of processing power for the application
- VNX systems are optimized for Space, Weight and Power (SWaP) as well as Cost
- VNX and VPX both have VITA Marketing Alliances

Simplified Comparison of VPX Vs. VNX

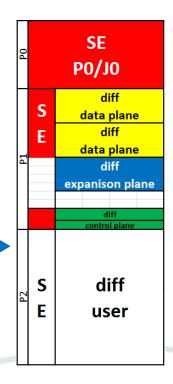
VPX	VNX				
Connector					
Proprietary	Multiple suppliers				
Fairly expensive	Less expensive				
Metalwork & Hardware					
Complex heat-frame	Less complex heat-frame				
Expensive wedgelocks	No wedgelocks				
Expensive Screws & Hardware	Standard Screws & Hardware				
Thermal					
Low thermal resistance	Higher thermal resistance				
High power capable	Lower power and performance				
Size & Volume					
3U size	< 50% size of a 3U module				



Backplane

	Row A	Row B	Row C	Row D	Row E	Row F	Row G	Row H
1	GAD	VSBY	GND	GND	VS1	VS1	VS1	VS1
2	GA1	VSBY	GND	GND	VS1	VS1	VS1	VS1
3	GA2	GND	GND	GND	VS2	VS2	VS2	VS2
4	UD	UD	GND	GND	VS2	VS2	VS2	VS2
5	GND	GND	GND	GND	VS3	VS3	VS3	VS3
6	UD	UD	GND	GND	VBAT	UD	VS4	VS4
7	UD	UD	GND	GND	GND	GND	GND	GND
8	GND	GND	I2CDATA	12CCLK	NVMRO	UD	RFU	RFU
9	UD	SYSRESET*	GND	GND	UD	GND	UD	GND
10	UD	GND	UD	UD	GND	UD	GND	UD
11	GND	UD	GND	GND	RFU	GND	RFU	GND
12	UD	GND	UD	GND	RFU	GND	RFU	GND
13	GND	UD	GND	CLK3_P	GND	CLK1_P	GND	UD
14	UD	GND	GND	CLK3_N	GND	CLK1_N	GND	RFU
15	GND	UD	UD	GND	CLK2_P	GND	CLK0_P	GND
16	RFU	GND	UD	GND	CLK2_N	GND	CLK0_N	GND

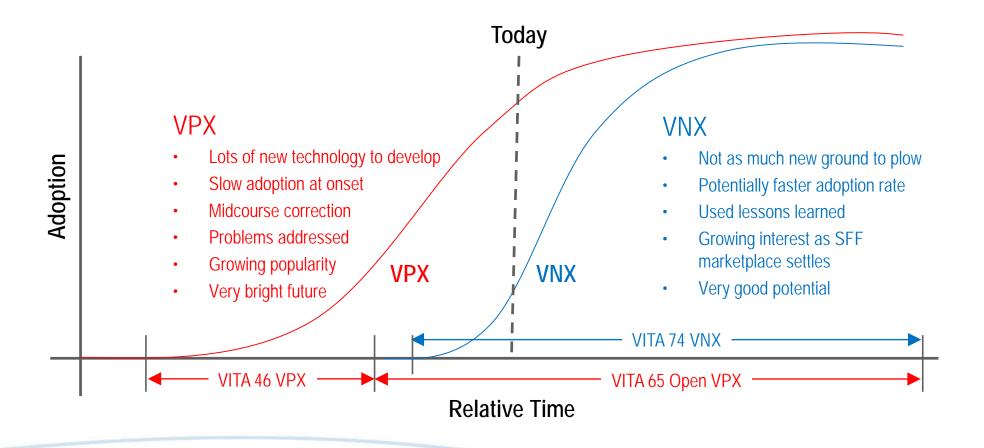
	Row G	Row F	Row E	Row D	Row C	Row B	Row A
1	V81	V81	V81	No Pad*	V82	V82	V82
2	V81	V81	V81	No Pad*	V82	V82	V82
3	V83	V83	V83	No Pad*	V83	V83	V83
4	SM2	SM3	GND	-12V_Aux	GND	SYSRESET*	NVMRO
5	GAP*	GA4*	GND	3.3V_Aux	GND	SM0	SM1
6	GA3*	GA2*	GND	+12V_Aux	GND	GA1*	GA0*
7	тск	GND	TDO	TDI GND TMS		TRST*	
8	GND	REF_CLK-	REF_CLK+	GND	AUX_CLK-	AUX_CLK+	GND


VNX

- Up to 32 diff pairs in S1
- Up to 18 diff pairs + 36 SE signals in S2

VPX

- Up to 32 diff pairs + 16 SE signals on P1
- Up to 32 diff pairs + 16 SE signals on P2


4 Fat Pipes = 32 diff pairs

Relative Adoption of VPX Vs. VNX

SWaP vs. Modularity vs. Performance

Large, hot, heavy

SWaP

VME, CPCI Low

> 3U VPX High

More Vendors

More Profiles

VNX Medium

- Legacy form factors provide high modularity at lower performance density.
- VPX and VNX provide a spectrum of size, weight and power.
- VNX offering medium performance at minimum size

Full custom

Legend
STANDARD
performance

Modularity, reuse

Modular, high reuse

no modularity, low reuse

Enhancement Potential (Via "Dot-Specs" or Supplier Innovation)

- VPX-REDI Analogous Implementation for VNX
- Connectivity recommendations
 - Alternative Fabrics (Serial RapidIO, Infiniband, etc.)
 - Alternative Module to Module Topology (Mesh, Star, etc.)
 - Box to Box Communications
- Thermal management
 - Improved shell design
 - Improved module contact with chassis
- RF and High Speed I/O
- Optical I/O

Thank You

Questions? Please contact

Bill Ripley

Creative Electronic Systems

+1 505 503 7491 (Office)

+1 505 980 8353 (Cell)

Bill.Ripley@CES-Cal.com

With you all the way...

